Which of the following is true with regard to the length of time that should be allowed for a dyad?

  1. Aronov B, Har-peled S, Knauer C, Wang Y, Wenk C. Frechet Distance for Curves, Revisited. Algorithms - ESA 206. 2006;:52–63. 1504.07685. Accessed 03 2019.

  2. Atwood TC, Weeks HP. Spatial home-range overlap and temporal interaction in eastern coyotes: the influence of pair types and fragmentation. Can J Zool. 2003; 81(9):1589–97. https://doi.org/10.1139/z03-144.

    Article  Google Scholar 

  3. Barnabe L, Volossovitch A, Duarte R, Ferreira AP, Davids K. Age-related effects of practice experience on collective behaviours of football players in small-sided games. Hum Mov Sci. 2016; 48:74–81. https://doi.org/10.1016/j.humov.2016.04.007.

    Article  Google Scholar 

  4. Benhamou S, Valeix M, Chamaillé-Jammes S, Macdonald DW, Loveridge AJ. Movement-based analysis of interactions in African lions. Anim Behav. 2014; 90:171–80. https://doi.org/10.1016/j.anbehav.2014.01.030.

    Article  Google Scholar 

  5. Bertrand MR, DeNicola AJ, Beissinger SR, Swihart RK. Effects of parturition on home ranges and social afficiliations of female white-tailed deer. J Wildl Manag. 1996; 60(4):899–909.

    Article  Google Scholar 

  6. Bertrand S, Diaz E, Lengaigne M. Patterns in the spatial distribution of Peruvian anchovy (Engraulis ringens) revealed by spatially explicit fishing data. Prog Oceanogr. 2008; 79(2-4):379–89. https://doi.org/10.1016/j.pocean.2008.10.009.

    Article  Google Scholar 

  7. Biro D, Sasaki T, Portugal SJ. Bringing a Time – Depth Perspective to Collective Animal Behaviour. Trends Ecol Evol. 2016; 31(7):550–62. https://doi.org/10.1016/j.tree.2016.03.018.

    Article  Google Scholar 

  8. Block BA, Jonsen ID, Jorgensen SJ, Winship AJ, Shaffer SA, Bograd SJ, Hazen EL, Foley DG, Breed GA, Harrison A-L, Ganong JE, Swithenbank A, Castleton M, Dewar H, Mate BR, Shillinger GL, Schaefer KM, Benson SR, Weise MJ, Henry RW, Costa DP. Tracking apex marine predator movements in a dynamic ocean. Nature. 2011; 475:86–90. https://doi.org/10.1038/nature10082.

    CAS  Article  Google Scholar 

  9. Börger L, Dalziel BD, Fryxell JM. Are there general mechanisms of animal home range bevhaviour? A review and prospects for future research,. Ecol Lett. 2008; 11(6):637–50. https://doi.org/10.1111/j.1461-0248.2008.01182.x.

    Article  Google Scholar 

  10. Brotherton PN, Pemberton JM, Komers PE, Malarky G. Genetic and behavioural evidence of monogamy in a mammal, Kirk’s dik-dik (Madoqua kirkii). Proc Biol Sci R Soc. 1997; 264(1382):675–81. https://doi.org/10.1098/rspb.1997.0096.

    CAS  Article  Google Scholar 

  11. Camazine S, Deneubourg J-L, Franks NR, Sneyd J, Bonabeau E, Theraula G. Self-organization in Biological Systems, vol 7. United States of America: Princeton University Press; 2003.

    Google Scholar 

  12. Cole LC. The Measurement of Interspecific Association. Ecology. 1949; 30(4):411–24.

    Article  Google Scholar 

  13. Conradt L, List C. Group decisions in humans and animals: A survey. Philos Trans R Soc B Biol Sci. 2009; 364(1518):719–42. https://doi.org/10.1098/rstb.2008.0276.

    Article  Google Scholar 

  14. De Solla SR, Bonduriansky R, Brooks RJ. Eliminating autocorrelation reduces biological relevance of home range estimates. J Anim Ecol. 1999; 68(2):221–34. https://doi.org/10.1046/j.1365-2656.1999.00279.x.

    Article  Google Scholar 

  15. Dhanjal-Adams KL, Bauer S, Emmenegger T, Hahn S, Lisovski S, Liechti F. Spatiotemporal Group Dynamics in a Long-Distance Migratory Bird. Curr Biol. 2018; 28(17):2824–303. https://doi.org/10.1016/j.cub.2018.06.054. Accessed 14 Nov 2018.

    CAS  Article  Google Scholar 

  16. Dodge S, Weibel R, Forootan E. Revealing the physics of movement: Comparing the similarity of movement characteristics of different types of moving objects. Comput Environ Urban Syst. 2009; 33(6):419–34. https://doi.org/10.1016/j.compenvurbsys.2009.07.008.

    Article  Google Scholar 

  17. Duarte CM, Riker P, Srinivasan M, Robinson PW, Gallo-Reynoso JP, Costa DP. Sonification of Animal Tracks as an Alternative Representation of Multi-Dimensional Data: A Northern Elephant Seal Example. Frontiers Mar Sci. 2018; 5. https://doi.org/10.3389/fmars.2018.00128. Accessed 10 June 2018.

  18. Duarte R, Araújo D, Correia V, Davids K, Marques P, Richardson MJ. Competing together: Assessing the dynamics of team-team and player-team synchrony in professional association football. Hum Mov Sci. 2013; 32(4):555–66. https://doi.org/10.1016/j.humov.2013.01.011.

    Article  Google Scholar 

  19. Duranton C, Gaunet F. Behavioural synchronization from an ethological perspective: overview of its adaptive value. Adapt Behav. 2016. https://doi.org/10.1177/1059712316644966.

  20. Fleming CH, Fagan WF, Mueller T, Olson KA, Leimgruber P, Calabrese JM. Estimating where and how animals travel: an optimal framework for path reconstruction from autocorrelated tracking data. Ecology. 2016; 97(3):576–82.

    CAS  PubMed  Google Scholar 

  21. Frechet M. Sur L’Ecart de Deux Courbes et Sur Les Courbes Limites. Trans Am Math Soc. 1905; 6(4):435–49.

    Article  Google Scholar 

  22. Giuggioli L, McKetterick TJ, Holderied M. Delayed Response and Biosonar Perception Explain Movement Coordination in Trawling Bats. PLoS Comput Biol. 2015; 11(3):1–21. https://doi.org/10.1371/journal.pcbi.1004089.

    Article  Google Scholar 

  23. Haydon DT, Morales JM, Yott A, Jenkins DA, Rosatte R, Fryxell JM. Socially informed random walks: incorporating group dynamics into models of population spread and growth. Proc Biol Sci R Soc. 2008; 275(1638):1101–9. https://doi.org/10.1098/rspb.2007.1688.

    Article  Google Scholar 

  24. Johnson A. Polyclip: Polygon Clipping. 2015. Ported to R by Adrian Baddeley and Brian Ripley. R package version 1.3-2. http://CRAN.R-project.org/package=polyclip.

  25. Josse J, Husson F, Pagès J. Gestion des données manquantes en Analyse en Composantes Principales. J Soc Fr Stat. 2009; 150(2):28–51.

    Google Scholar 

  26. Kenward RE, Marcström V, Karlbom M. Post-nestling behaviour in goshawks, Accipiter gentilis: II. Sex differences in sociality and nest-switching. 1993. https://doi.org/10.1006/anbe.1993.1199. http://dx.doi.org/10.1006/anbe.1993.1199%5Cnhttp://linkinghub.elsevier.com/retrieve/pii/S0003347283711991.

  27. Konzack M, McKetterick T, Ophelders T, Buchin M, Giuggioli L, Long J, Nelson T, Westenberg MA, Buchin K. Visual analytics of delays and interaction in movement data. Int J Geogr Inf Sci. 2017; 31(2):320–45. https://doi.org/10.1080/13658816.2016.1199806.

    Article  Google Scholar 

  28. Kuang K, Napolitano F. Pbmcapply: Tracking the Progress of Mc*pply with Progress Bar. 2018. R package version 1.3.0. https://CRAN.R-project.org/package=pbmcapply.

  29. Langrock R, Hopcraft JGC, Blackwell PG, Goodall V, King R, Niu M, Patterson TA, Pedersen MW, Skarin A, Schick RS. Modelling group dynamic animal movement. Methods Ecol Evol. 2014; 5(2):190–9. https://doi.org/10.1111/2041-210X.12155. arXiv:1308.5850v1.

    Article  Google Scholar 

  30. Laube P, Purves RS. How fast is a cow? Cross-Scale Analysis of Movement Data. Trans GIS. 2011; 15(3):401–18. https://doi.org/10.1111/j.1467-9671.2011.01256.x.

    Article  Google Scholar 

  31. Laube P, Dennis T, Forer P, Walker M. Movement beyond the snapshot - Dynamic analysis of geospatial lifelines. Comput Environ Urban Syst. 2007; 31(5):481–501. https://doi.org/10.1016/j.compenvurbsys.2007.08.002.

    Article  Google Scholar 

  32. Lê S, Josse J, Husson F. FactoMineR: A package for multivariate analysis. J Stat Softw. 2008; 25(1):1–18. https://doi.org/10.18637/jss.v025.i01.

    Article  Google Scholar 

  33. Levenshtein VI. Binary codes capable of correcting deletions, insertions, and reversals. Sov Phys Dokl. 1966; 10(8):707–10. https://doi.org/citeulike-article-id:311174. arXiv:1011.1669v3.

    Google Scholar 

  34. Levitis DA, Lidicker WZ, Freund G. Behavioural biologists don’t agree on what constitutes behaviour,. Anim Behav. 2009; 78(1):103–10. https://doi.org/10.1016/j.anbehav.2009.03.018.

    Article  Google Scholar 

  35. Long J. wildlifeDI: Calculate Indices of Dynamic Interaction for Wildlife Telemetry Data. 2014. R package version 0.2. https://CRAN.R-project.org/package=wildlifeDI.

  36. Long J, Nelson T. Home range and habitat analysis using dynamic time geography. J Wildl Manag. 2015; 79(3):481–90. https://doi.org/10.1002/jwmg.845.

    Article  Google Scholar 

  37. Long JA, Nelson TA. Measuring Dynamic Interaction in Movement Data. Trans GIS. 2013; 17(1):62–77. https://doi.org/10.1111/j.1467-9671.2012.01353.x.

    Article  Google Scholar 

  38. Long JA, Nelson TA, Webb SL, Gee KL. A critical examination of indices of dynamic interaction for wildlife telemetry studies. J Anim Ecol. 2014; 83:1216–33. https://doi.org/10.1111/1365-2656.12198.

    Article  Google Scholar 

  39. Long JA, Webb SL, Nelson TA, Gee KL. Mapping areas of spatial-temporal overlap from wildlife tracking data. Mov Ecol. 2015; 3(1):38. https://doi.org/10.1186/s40462-015-0064-3.

    Article  Google Scholar 

  40. Lord WM, Sun J, Ouellette NT, Bollt EM. Inference of Causal Information Flow in Collective Animal Behavior. IEEE Trans Mol Biol Multi-Scale Commun. 2016; 2(1):107–16. https://doi.org/10.1109/TMBMC.2016.2632099. Accessed 21 Nov 2018.

    Article  Google Scholar 

  41. Miller JA. Using Spatially Explicit Simulated Data to Analyze Animal Interactions: A Case Study with Brown Hyenas in Northern Botswana. Trans GIS. 2012; 16(3):271–91. https://doi.org/10.1111/j.1467-9671.2012.01323.x.

    Article  Google Scholar 

  42. Minta SC. Tests of Spatial and Temporal Interaction Among Animals. Ecol Appl. 1992; 2(2):178–88.

    Article  Google Scholar 

  43. Nathan R, Getz WM, Revilla E, Holyoak M, Kadmon R, Saltz D, Smouse PE. A movement ecology paradigm for unifying organismal movement research. PNAS. 2008; 105(49):19052–9.

    CAS  Article  Google Scholar 

  44. Niu M, Blackwell PG, Skarin A. Modeling interdependent animal movement in continuous time. Biometrics. 2016; 72(2):315–24. https://doi.org/10.1111/biom.12454.

    Article  Google Scholar 

  45. Orange N, Abaid N. A transfer entropy analysis of leader-follower interactions in flying bats. Eur Phys J Spec Top. 2015; 224(17):3279–93. https://doi.org/10.1140/epjst/e2015-50235-9. Accessed 14 Nov 2018.

    Article  Google Scholar 

  46. Plot V, de Thoisy B, Blanc S, Kelle L, Lavergne A, Roger-Bérubet H, Tremblay Y, Fossette S, Georges J-Y. Reproductive synchrony in a recovering bottlenecked sea turtle population. J Anim Ecol. 2012; 81(2):341–51. https://doi.org/10.1111/j.1365-2656.2011.01915.x.

    Article  Google Scholar 

  47. Potts JR, Mokross K, Lewis Ma. A unifying framework for quantifying the nature of animal interactions. J R Soc Interface. 2014; 11(96):20140333. https://doi.org/10.1098/rsif.2014.0333. 1402.1802.

    Article  Google Scholar 

  48. R Core Team. R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing; 2015. R Foundation for Statistical Computing. https://www.R-project.org/.

    Google Scholar 

  49. Ribeiro Jr PJ, Diggle PJ. geoR: Analysis of Geostatistical Data. 2015. R package version 1.7-5.1. http://CRAN.R-project.org/package=geoR.

  50. Rice JC, Rochet MJ. A framework for selecting a suite of indicators for fisheries management. ICES J Mar Sci. 2005; 62(3):516–27. https://doi.org/10.1016/j.icesjms.2005.01.003.

    Article  Google Scholar 

  51. Richman JS, Moorman JR. Physiological time-series analysis using approximate entropy and sample entropy,. Am J Physiol Heart Circ Physiol. 2000; 278(6):2039–49.

    Article  Google Scholar 

  52. Rochet M-J, Trenkel VM. Which community indicators can measure the impact of fishing? A review and proposals. Can J Fish Aquat Sci. 2003; 60(1):86–99. https://doi.org/10.1139/f02-164.

    Article  Google Scholar 

  53. Russell JC, Hanks EM, Haran M. Dynamic Models of Animal Movement with Spatial Point Process Interactions. J Agric Biol Environ Stat. 2016; 21(1):22–40. https://doi.org/10.1007/s13253-015-0219-0. Accessed 07 June 2018.

    Article  Google Scholar 

  54. Schreiber T. Measuring Information Transfer. Phys Rev Lett. 2000; 85(2):461–4. https://doi.org/10.1103/PhysRevLett.85.461. Accessed 19 Nov 2018.

    CAS  Article  Google Scholar 

  55. Shirabe T. Correlation Analysis of Discrete Motions In: Raubal M, Miller HJ, Frank AU, Goodchild MF, editors. Geographic Information Science. Volume 4197 of the Series Lecture Notes in Computer Science. Münster: Springer-Verlag: 2006. p. 370–82.

    Google Scholar 

  56. Sumpter DJT, Mann RP, Perna A. The modelling cycle for collective animal behaviour. Interface Focus. 2012; 2:764–73. https://doi.org/10.1098/rsfs.2012.0031.

    Article  Google Scholar 

  57. Travassos B, Davids K, Araujo D, Esteves PT. Performance analysis in team sports: Advances from an Ecological Dynamics approach. Int J Perform Anal Sport. 2013; 13(1):83–95.

    Article  Google Scholar 

  58. Van Strien AJ, Soldaat LL, Gregory RD. Desirable mathematical properties of indicators for biodiversity change. Ecol Indic. 2012; 14(1):202–8. https://doi.org/10.1016/j.ecolind.2011.07.007.

    Article  Google Scholar 

  59. VanDerWal J, Falconi L, Januchowski S, Shoo L, Storlie C. SDMTools: Species Distribution Modelling Tools: Tools for Processing Data Associated with Species Distribution Modelling Exercises. 2014. R package version 1.1-221. https://CRAN.R-project.org/package=SDMTools.

  60. Vlachos M, Kollios G, Gunopulos D. Discovering similar multidimensional trajectories. In: Proceedings 18th International Conference on Data Engineering. Washington, DC: IEEE Computer Society: 2002. p. 673–684. https://doi.org/10.1109/ICDE.2002.994784.

    Google Scholar 

  61. Wang XR, Miller JM, Lizier JT, Prokopenko M, Rossi LF. Quantifying and Tracing Information Cascades in Swarms. PLoS ONE. 2012; 7(7):40084. https://doi.org/10.1371/journal.pone.0040084. Accessed 14 Nov 2018.

    Article  Google Scholar 

  62. White PCL, Harris S. Encounters between Red Foxes (Vulpes vulpes): Implications for Territory Maintenance, Social Cohesion and Dispersion. J Anim Ecol. 1994; 63(2):315–27.

    Article  Google Scholar 

  63. Wong J. Pdist: Partitioned Distance Function. 2013. R package version 1.2. http://CRAN.R-project.org/package=pdist.


Page 2

Metric Range Parameters fixed ad hoc and Assumptions
\(Prox = K_{\delta }^{+}/T\) [0, 1] i) δ: distance threshold, ii) K : kernel
\(Cs = \frac { D_{chance} - \left (\sum _{t=1}^{T} d_{t}^{A,B} \right)/T}{D_{chance} + \left (\sum _{t=1}^{T} d_{t}^{A,B} \right)/T} \) ]−1,1] Dchance definition
\(HAI = \frac {K_{\delta }^{+}}{K_{\delta }^{+} + (n_{A0} + n_{0B})/2}\) [0,1] i) Reference area, ii) δ: distance threshold
\(L_{ixn}T = \text {logistic}\left (\ln {\left (\frac {n_{AB}/p_{AB} + n_{00}/p_{00}}{n_{A0}/p_{A0} + n_{0B}/p_{0B} }\right)}\right)\) [0, 1] Reference area;
\(jPPA = \frac {S\left \{ \bigcup \limits _{t=1}^{T-1} \left (E_{\phi ^{A}}\left (X_{t}^{A},X_{t+1}^{A}\right) \cap E_{\phi ^{B}}\left (X_{t}^{B},X_{t+1}^{B}\right) \right) \right \}}{S\left \{ \bigcup \limits _{t=1}^{T-1} \left (E_{\phi ^{A}}\left (X_{t}^{A},X_{t+1}^{A}\right) \cup E_{\phi ^{B}}\left (X_{t}^{B},X_{t+1}^{B}\right) \right) \right \}}\) [0, 1] i) Every zone within ellipse has same odd of being transited, ii) ϕ: maximum velocity
\(CSEM = \frac {\max \left \{m; N_{m} >0\right \} }{T-1}\) [0, 1] distance threshold
\(r_{V} = \frac {\sum _{t=1}^{T}\left (V^{A}_{t} - \bar {V}^{A}\right)\left (V^{B}_{t} - \bar {V}^{B}\right)}{\sqrt {\sum _{t=1}^{T}\left (V^{A}_{t} - \bar {V}^{A}\right)^{2}}\sqrt {\sum _{t=1}^{T}\left (V^{B}_{t} - \bar {V}^{B}\right)^{2}}}\) [-1, 1]  
\(DI_{d} = \left (\sum _{t=1}^{T-1} \left [1 - \left (\frac {\mid d_{t,t+1}^{A}-d_{t,t+1}^{B}\mid }{d_{t,t+1}^{A}+d_{t,t+1}^{B}}\right)^{\beta }\right ]\right)/(T-1)\) [0, 1] β: scaling parameter
\(DI_{\theta } = \left (\sum _{t=1}^{T-1} \cos \left (\theta _{t,t+1}^{A} - \theta _{t,t+1}^{B}\right)\right)/(T-1)\) [-1, 1]  
\(DI = \frac {\sum _{t=1}^{T-1} \cos (\theta _{t,t+1}^{A} - \theta _{t,t+1}^{B})\left [1 - \left (\frac {\mid d_{t,t+1}^{A}-d_{t,t+1}^{B}\mid }{d_{t,t+1}^{A}+d_{t,t+1}^{B}}\right)^{\beta }\right ]}{T-1}\) [-1, 1]  
   β: scaling parameter

  1. Note: The formulas assume simultaneous fixes. \(K_{\delta }^{+} = \sum _{t=1}^{T} K_{\delta }\left (X^{A}_{t},X^{B}_{t}\right)\); T is the number of (paired) fixes in the dyad; δ is a distance-related parameter. K is a kernel function. A, B: the two individuals in the dyad; T: number of fixes in the dyad; Dchance is the chance-expected distance between A and B; nAB: number of observed fixes where A and B are simultaneously in the reference area (when a subscript is 0, it represents the absence of the corresponding individual from the reference area); pAB: probability of finding A and B simultaneously in the reference area (same interpretation as for n when a subscript is 0); \(E_{\phi ^{A}}\left (X_{t}^{A},X_{t+1}^{A}\right)\) is the ellipse formed with positions Xt and Xt+1, and maximum velocity ϕ from individual A (analogous for B); S represents the surface of the spatial object between braces; VA (and VB, resp.) represents the analysed motion variable of A (and B); \(\bar {V}^{A}\) (and \(\bar {V}^{B}\)) represent their average; β is a scale parameter; θ, the absolute angle; Nm is the number of m-similar consecutive segments within the series of analysed steps