Qual é a area de um triângulo equilátero cujo perímetro é igual a 45 cm

A área do triângulo é a medida da sua superfície e utiliza como unidade de medida qualquer medida de comprimento elevada ao quadrado, por exemplo os metros quadrados, centímetros quadrados etc. De forma geral, a área de um triângulo consiste na metade da multiplicação da base pela altura.

Leia também: Circunferência – figura plana constituída pelo conjunto de pontos equidistantes do centro

Como calcular a área de um triângulo?

O triângulo é o polígono mais simples que existe, porém isso não diminui a importância dele, já que pode ser muito explorado em diversas áreas da matemática e também da física. Embora existam algumas fórmulas diferentes para triângulos equiláteros e retângulos, o cálculo da área de um triângulo qualquer necessita basicamente conhecer o valor da base (b) e da altura (h).

A→ área

b → base

h→ altura

Calcule a área do triângulo a seguir:

De modo geral, essa fórmula é eficiente para calcular área de todos os triângulos, como o triângulo escaleno, isósceles e equilátero.

A área de um triângulo retângulo é bastante parecida com a área de um triângulo qualquer, porém, nesse caso específico, a altura coincide com um dos seus lados, logo, a base e a altura coincidem com os catetos (os lados menores) do triângulo retângulo. Apenas no triângulo retângulo é possível calcular o valor da área multiplicando os lados perpendiculares. Sejam a e b os catetos, como na imagem a seguir, é possível calcular a área a partir da multiplicação dos catetos dividido por 2.

Um triângulo retângulo possui lados medindo 6 cm, 8 cm e 10 cm. Qual é a área desse triângulo?

Para calcular a área do triângulo, precisamos identificar os dois catetos. A hipotenusa de um triângulo retângulo é sempre o maior lado, logo ela mede 10 cm. Então, os catetos medem 6 cm e 8 cm.

Veja também: Cone – sólido geométrico formado a partir da rotação de um triângulo

Área do triângulo equilátero

Sabe-se que o triângulo equilátero possui todos os lados congruentes, ou seja, que possuem a mesma medida. O triângulo equilátero é um caso especial de triângulo que possui fórmula específica para o cálculo da área. Em um triângulo equilátero, é possível calcular sua área conhecendo somente o valor de um lado. Isso acontece porque o triângulo equilátero possui todos os seus ângulos medindo 60º.

Encontre a área do triângulo equilátero, cujo lado mede 6 cm.

Qual é a area de um triângulo equilátero cujo perímetro é igual a 45 cm
O triângulo é um polígono de três lados.

Exercícios resolvidos

Questão 1 - Um terreno será divido em três partes para a construção de um jardim. A área em verde será preenchida com grama, conforme a imagem a seguir:

Sabendo que a grama custa R$9,00 o metro quadrado e que essa região retangular possui lados medindo 14m e 6m, qual será o valor gasto com a grama?

A) R$ 399,00

B) R$ 400,00

C) R$ 798,00

D)R$ 800,00

Resolução

Alternativa A

1º passo: calcular a área do triângulo, sabendo que a base mede 14 metros e a altura mede 6 metros

2º passo: Calcular o valor gasto

9,50 · 42 = 399,00

Questão 2 - Qual é a área aproximada de um triângulo equilátero que possui lado medindo 5 cm?

A) 41,9 cm²

B) 41,6 cm²

C) 20,9 cm²

D) 20,8 cm²

Resolução

Alternativa D

Realizando o arredondamento, o valor mais próximo da área é 20,8 cm² .

1. São dados 3 segmentos a = 3 cm, b = 2 cm e c = 2,5 cm. Pede-se encontrar a quarta proporcional entre a, b e c.

2. São dados 2 segmentos a = 3cm e b = 2 cm. Pede-se encontrar a terceira proporcional entre a e b.

3. São dados 2 segmentos a = 3 cm e b = 2 cm. Pede-se encontrar a média geométrica entre a e b.

4. Obtenha X no segmento AB=7cm de modo que AX/XB = 3/5.

5. Construir um triângulo equilátero cujo perímetro é igual ao segmento AB=12,5 cm.

6. Construir um retângulo cujo perímetro é 14 cm e seus lados são proporcionais a 3 e 5.

7. Achar graficamente a média geométrica entre m=2 cm e m raiz de 3 cm.

8. Construir um triângulo cujo perímetro é 12 cm e seus lados são proporcionais à 3, 4 e 6.

9. Construir um quadrado de lado igual a 4 cm e ache a média geométrica entre seu lado e sua diagonal.

10. Construir um quadrado com área equivalente a um círculo de raio = 3 cm.

11. Construir um triângulo de base igual 8 cm com área equivalente ao quadrado do exercício anterior.

12. Construir um triângulo equivalente a um hexágono regular de lado = 3 cm.

13. Escrever a palavra ARQUITETURA num retângulo de lados 7 cm e 1,5 cm.

REFERÊNCIAS BIBLIOGRÁFICAS

BRAGA, Theodoro . Desenho Linear Geométrico. São Paulo : Ícone. 13° ed. 230 p.


RIVERA, Félix ; NEVES, Juarenze; GONÇALVES, Dinei (1986). Traçados em Desenho Geométrico. Rio Grande: editora da Furg, 389 p.

O triângulo equilátero é um tipo especial de triângulo. Por essa razão, todas as propriedades que valem para os triângulos são válidas para ele, mas esse tipo também possui propriedades específicas.

Quando um polígono possui somente três lados, ele é conhecido como triângulo. Essa forma geométrica pode ser classificada quando se comparam seus lados. Assim, um triângulo pode ser escaleno, quando todos os lados são diferentes; isósceles, quando dois lados são congruentes; e equilátero, quando os três lados são congruentes.

O triângulo equilátero possui características específicas em razão das medidas iguais. Há, inclusive, fórmulas para cálculo de área e perímetro que são eficientes somente para triângulos equiláteros

Leia também: Pirâmides – figuras geométricas cujas faces laterais são formadas por triângulos

Propriedades do triângulo equilátero

Um triângulo é conhecido como equilátero quando ele possui a medida dos três lados congruentes, assim, consequentemente, os seus ângulos internos também são congruentes. Como a soma dos ângulos internos de um triângulo é sempre igual a 180º e os ângulos são iguais, ao dividirmos 180º por 3, chegaremos a ângulos de 60º. Os ângulos internos do triângulo equilátero, portanto, sempre medem 60°.

Em razão dessas características, o triângulo equilátero possui propriedades específicas. Se traçarmos a altura do triângulo equilátero, ela também será bissetriz (segmento de reta que divide o ângulo em duas partes congruentes) e mediana (segmento de reta que liga o vértice ao ponto médio do lado oposto).

Ao dividirmos o triângulo como feito na imagem anterior, a altura do triângulo pode ser escrita em função do lado, o que pode ser demonstrado tanto por trigonometria quanto pelo teorema de Pitágoras.

A fórmula para calcular a altura de um triângulo equilátero é:

Leia também: Mediana, bissetriz e altura de um triângulo

No teorema de Pitágoras, é demonstrado que existe uma relação entre os lados de um triângulo retângulo. A soma do quadrado dos catetos é igual à hipotenusa ao quadrado. A hipotenusa é o maior lado oposto ao ângulo de 90º (no nosso caso, o lado que mede l), e os catetos são os outros dois lados. Então, temos que:

→ 2ª demonstração:

Vale lembrar dois dados importantes da trigonometria. Um deles é o seno de um ângulo e o outro é o valor do seno de 60º.

O seno de um ângulo qualquer é dado pela relação entre o cateto oposto e a hipotenusa do triângulo retângulo:

Vale lembrar também os ângulos notáveis, que são os ângulos de 30º, 45º e 60º. Neste caso usaremos o ângulo de 60º, então é importante pontuar que:

Isso torna possível demonstrar que a altura só depende de h. Veja:

Independentemente do tipo de demonstração, é possível perceber que a altura (h) depende somente do valor do lado para ser calculada.

Perímetro do triângulo equilátero

Perímetro é a soma de todos os lados de um polígono. Como o triângulo equilátero é um polígono regular, ou seja, possui todos os três lados congruentes, o cálculo do seu perímetro é muito simples, depende somente da medida do lado l de um triângulo equilátero. Como ele possui os três lados com a mesma medida, temos que:

P = 3l

Exemplo 1:

Calcule o perímetro do triângulo equilátero cujo lado mede 9 cm.

Resolução:

P = 3l

P = 3.9 = 27 cm

Exemplo 2:

Para cercar um terreno com 5 voltas de arame, foram necessários 450 metros de arame. Sabendo que o terreno tem o formato de um triângulo equilátero, qual é a medida de cada um dos seus lados?

Resolução:

Temos como dado 5 vezes o perímetro e queremos descobrir o valor dos lados.

Sendo assim, temos que:

Acesse também: Área do prisma – cálculo feito a partir da planificação de sólidos geométricos

Área do triângulo equilátero

Entendemos que área de um triângulo qualquer é dada pela multiplicação da base pela altura dividida por dois, mas o triângulo equilátero possui uma fórmula especial para ele, que é a seguinte:

→ Demonstração da fórmula:

A área de um triângulo qualquer é dada por:

Qual é a area de um triângulo equilátero cujo perímetro é igual a 45 cm
O triângulo equilátero possui todos os lados e ângulos iguais.

Exercícios resolvidos

Questão 1 - A área e a altura de um triângulo equilátero que possui um perímetro de 15 cm são, respectivamente (sugestão: use √3 = 1,7)?

a) 15 e 225

b) 5 e 11,3

c)10,5 e 21

d) 4,25 e 10,625

e) 8,5 e 22,5

Resolução

- 1º passo: encontrar o valor do lado l.

Se o perímetro é 15 cm, significa que 3l é igual a 15, logo o lado do triângulo é 5 cm.

- 2º passo: calcular altura.

- 3º passo: calcular a área.

Letra d.

Questão 2 - Um triângulo equilátero possui lados medindo y, 2x + 3 e 4x – 2, logo os valores de x e y são, respectivamente:

a) 5 e 16

b) 16 e 5

c) 4 e 2

d)8 e 2,5

e) 2,5 e 8

Resolução:

Um triângulo equilátero possui lados congruentes, então:

Primeiro, vamos igualar os lados que possuem mesma incógnita:

Sabendo o valor de x, escolhemos qualquer um dos lados que possui essa incógnita e igualamos a y.

Letra E. 

Por Raul Rodrigues de Oliveira
Professor de Matemática